Perform a Linear Regression within the Discordant Kinship Framework

discord_regression(
  data,
  outcome,
  predictors,
  id = "extended_id",
  sex = "sex",
  race = "race",
  pair_identifiers = c("_s1", "_s2")
)

Arguments

data

A data frame.

outcome

A character string containing the outcome variable of interest.

predictors

A character vector containing the column names for predicting the outcome.

id

A unique kinship pair identifier.

sex

A character string for the sex column name.

race

A character string for the race column name.

pair_identifiers

A character vector of length two that contains the variable identifier for each kinship pair.

Value

A tidy dataframe containing the model metrics via the tidy function.

Examples

discord_regression(data = sample_data, outcome = "height", predictors = "weight", pair_identifiers = c("_s1", "_s2"), sex = NULL, race = NULL)
#> # A tibble: 4 x 5 #> term estimate std.error statistic p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 (Intercept) 0.895 0.00638 140. 0. #> 2 height_mean 0.0809 0.00698 11.6 5.83e-31 #> 3 weight_diff 0.0506 0.00505 10.0 1.42e-23 #> 4 weight_mean -0.0582 0.00764 -7.61 2.77e-14