fitComponentModel Fit the estimated variance components of a model to covariance data
Source:R/identifyModel.R
fitComponentModel.Rd
fitComponentModel Fit the estimated variance components of a model to covariance data
Arguments
- covmat
The covariance matrix of the raw data, which may be blockwise.
- ...
Comma-separated relatedness component matrices representing the variance components of the model.
Value
A regression (linear model fitted with lm
). The coefficients of the regression represent the estimated variance components.
Details
This function fits the estimated variance components of a model to given covariance data. The rank of the component matrices is checked to ensure that the variance components are all identified. Warnings are issued if there are inconsistencies.
Examples
if (FALSE) {
# install.packages("OpenMX")
data(twinData, package = "OpenMx")
sellVars <- c("ht1", "ht2")
mzData <- subset(twinData, zyg %in% c(1), c(selVars, "zyg"))
dzData <- subset(twinData, zyg %in% c(3), c(selVars, "zyg"))
fitComponentModel(
covmat = list(cov(mzData[, selVars], use = "pair"), cov(dzData[, selVars], use = "pair")),
A = list(matrix(1, nrow = 2, ncol = 2), matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2)),
C = list(matrix(1, nrow = 2, ncol = 2), matrix(1, nrow = 2, ncol = 2)),
E = list(diag(1, nrow = 2), diag(1, nrow = 2))
)
}